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The stability of a rod made of a non-aging viscoelastic material whose relaxation kernel can be expressed as 

the sum of exponents is investigated. The exact conditions for the stabilithof motion with respect to the 

statistical moments of the deflection amplitude of the rod, subject to a co dressing force whose random 

component is proportional to white noise, are obtained. 

THE STABILITY of viscoelastic rods is considered in [l], where the mean square dispersion of the 
external load and the measure of the creep of the material are both assumed to be small. The 
asymptotic method [2] was used to solve the problem under such assumptions, leading to results 
whose degree of accuracy has remained unknown. In [3,4] a number of model problems concerned 
with the stability of motion of a rod have been considered. In [5] the second Lyapunov method was 
employed to analyse the stability of a rod made from a standard viscoelastic material subject to a 
longitudinal force of the type of white noise. The condition under which the rod is almost surely 
stable was found. 

1. THE STABILITY OF A VISCOELASTIC ROD 

The motion of a viscoelastic rod subject to a longitudinal force F can be described by the equation 

EI (1 - r)w’” + (Fo + F,)(W + WJ -/- mW” + kW’ = 0 (1.1) 

I-W =\I-@ -T) IV (T) dT 
0 

Here k is the damping factor, which takes into account the external resistance to the motion of the 
rod, Wa is the initial deflection of the axis of the rod, and Fo and F,(t) are the deterministic 
component of the compressive force (which is constant in time) and a random pulsation with zero 
expectation value. The remaining notation is the generally accepted one. 

We assume that the rod is hinged at each end and has the following initial deflection Wa , as well as 
the additional deflection W of its axis at the initial instant of time: 

W,(X) =f,sin+I, W(O,s) =f(O)sin+Z 

We shall seek a solution of Eq. (1.1) in the form of the same sinusoid, whose amplitude can be 
determined from the equation 

f” + 2&f’ + 02 [(I - IY - (a + %)(f + fo)l = 0 (1.2) 
k 
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From now on we shall assume that the equality 

IYf = 2 XiLi S c-n’(t-r)f (T) dr 
i=l 0 

is satisfied, xi and Li constants, which characterize the viscous properties of the material. 
Using the substitution 

t 
Zi’ = xi_& i #pW)f (q &y 

i 

we can represent Eq. (1.2) as the following system of first-order differential equations: 

zi * = Xi (Lifl - Zi), i = 1, 2, . . ., ?Z. (1.3) 

We assume that the random pulsation of the longitudinal force is proportional to Gaussian white 
noise t(t), i.e. cxl (t) = PC(t), where l3 is a deterministic constant. Then the system of equations 
(1.3) describes the evolution of an (n + 2)-dimensional Markov process. 

For this process, we write down the Fokker-Planck-Kolmogorov equation 

-g- = j?~~xj(li-~jh~Pl-~~frP~ + ~{[w2 + +- j, zi- 
i-3 ’ i=Z 

- 4 vi + fo)] P} + q- -$r- [VI + fo)” PI (1.4) 

Using this equation, we can write down the equations for the statistical moments of fi, fi, Zi 
(i=l, 2, . ..) n) of arbitrary order. In particular, for the first- and second-order moments, we 
obtain the following systems of equations: 

d (fl> 
- = (f2> dt 

d <fd - =-22e(f,)--2 
dt 

i=l 

d (8.) 
1 = xi (~5~ (fl) - (zi)), 

dt 
i = 1,2, . . ., n 

$ <f12> = 2 (flf*> 

$ w2> = (fi2> 328 <fJ2> + 63 p12> - 2 <flZi> --a ((f12> + (II> fo,]} 

i=l 

f (f*2> = -2 ( 2e (f22> + o2 [ (flf2> - 2 <fzzi> --a ((fJ2> + <f2> fo)]} + 

i=l 

+ Baa4 [(fi2> + 2 (fl> fo + fo21 

& czkzj) = - ix, ((zkzj> - Lj (zkfl>) + xk ((zkz/) -Lk <Zjf,>)] 

-& czkfl> = - [xk (<zkfi) - Lk <fl”>)l + (fszk> 

‘$ (zkf2)-= - lxk (czkf2> - Lk (fafl>)] - 

- 
{2e (Zkf2) + O2 [ cZkfl) - 2 czkzi) - Oc ((zkfi> + czk) fo)]} 

i=l 

(1.5) 

(1.6) 
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Here and henceforth the average over the set of samples is denoted by angle brackets. 
The Fokker-Planck-Kolmogorov equation enables us not only to obtain the equations for the 

statistical moments of the deflection amplitude of the rod, but also, in particular, to solve the 
problem of the excursions of f(t) beyond the boundaries of the domain of admissible values, which 
enables one to answer to question of the stability of the rod over a finite time interval. If the 
problem can be reduced solely to obtaining the equations in terms of the moments, then, in order to 
do so, one can use the equations of motion (1.3) directly (see [6]). 

Consider a rod with zero initial deflection of the axis (fc = 0). The stability of the straight-line 
state of equilibrium of the rod under perturbations of the initial conditions with respect to the first- 
and second-order statistical moments is determined by the signs of the real parts of the characteristic 
roots of the equations 

1 A("') -3LEI=O 

where Acm) denotes the matrix formed by the constant coefficients of the system of differential 
equations for the moments of the corresponding order and E is the identity matrix. 

We take the relaxation kernel of the material of the rod of the form 

r (t - 7) = X&-w-T) 

Then, considering the system of equations with respect to the expectation values (fr ), (f~ ), (zr ), 
one can verify that the rod is stable, the stability being asymptotic with respect to the second-order 
moments [8], if the condition 

a<l---L 

is satisfied. 
We remark that this relation is the same as the condition of stability for a viscoelastic rod in the 

deterministic formulation of the problem. 
Next, considering the system of equations with respect to the statistical moments of order two, we 

obtain the condition (for 6 > 0) 

--p%#n < 62 [2&02 (1 - a) + x&L + 2&X (x + 2s)1 (1.7) 

under which the rod turns out to be mean-square asymptotically stable. 
Here 

q = 1 - L - a + X (x + 2E)/m2, 6 = 1 - L - a 

2. SPECIAL CASES 

Case 1. An elastic rod. For x = L = 0, inequality (1.7) takes the form 

/3” < 4s/02 (1 - a) (2.1) 

which is identical with the result obtained in [7]. 
Hence it follows that the random dispersion of the longitudinal force increases as the external 

deformation increases and the frequency w of characteristic oscillations decreases. 

Case 2. A viscoelastic rod without external deformation. Setting 6 > 0 for E = 0, we can find from 
(1.7) that 

x/3”< 2 (X/W)2L6/Tj~ (2.2) 

or 

a<1 - L - (x/w)2A-1, A = 2 (x/w)"L/(@") - 1 (2.3) 

where 
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‘70 = 1 - L - a + (%h)2, A > 0 

Inequalities (2.2) and (2.3) indicate that the values of p2 or 01 that ensure the mean-square 
stability of the rod depend not only on L, which determines the limiting stress relaxation in the 
viscoelastic rod, but also on the ratio X/O. In particular, if 

(q0jw-1 = f - L 

then the rod can be stable only for a constant stretching component of the lon~tudinai force. 
If we employ the asymptotic method [l, 33 to determine the stability conditions similar to (2.2) 

and (2.3), we get (for 1 - ar>O) 

xfi2 < 2 (x/o)*L (1 - a)(l -a + sc2/co2)-l 

a < 1 - (x/o)W’ 

Comparing these inequalities with (2.2) and (2.3), one can note that they yield similar results for 
small L. 

Therefore, when applying the asymptotic method, it suffices to stipulate that L should be small, 
without imposing any restrictions on the parameter x, which characterizes the relaxation time of the 
material. 

To compare the influence of the resistance of the motion, which is pro~~ional to the rate of variation of the 
deflection, and the viscous properties of the material upon the stability of the motion of the rod, we represent 
(1.7) in the form 

fi*o < 2 (1 - L - a)(2e/w + L (2e/w + xlo)[l - L -a + x (% + 2e)/oa]-1) (2.4) 

We assume that e/r) and X./W are approximately equal to one another. Then 

fl*o < 4 (i - L - u}(f/~)it + s/,.& (i - L - a + 3~~/02)‘r] 

If we assume that E~/w~=O, then 

fPw < 4 (8/o)(i + r/& - a) (2.5) 

The constant L can take values between 0 and 1 inclusive (L = 0 for an elastic medium and L = 1 for a 
viscoefastic medium described by Maxwell’s model). 

The comparison of (2.5) with the similar inequality (2.1) for an elastic rod shows that the upper limit for l3% 
is much larger for a viscoelastic rod than for an elastic one. 

But if we assume that the relations xl0 cii E/W and &X/W ‘==O are satisfied, then from (2.4) we can obtain the 
condition of stability, which is exactly the same as that for an elastic rod. 

Finally, we consider the case when L = 1. Then inequality (1.7) takes the form 

IPer < -2a {2&f@ + (2e/0 + %lo)IX (x + 2s)Ios - aj-l} 

with 

# (x + 29)/o’ - a > 0 

Hence one can see that the rod can be stable when the expectation value of the longitudinal force is a constant 
(in time) tensile force. 

Case 3. A weightless rod in a viscous medium. As m+O, the frequency w of the characteristic 
oscillations increases without limit and the ratio 240~ remains unchanged and equal to l/r, where 

y = rPEI/(kl”) 

Then we find from (1.7) that 

yJa < 26rhV1 (1 - a + q-') (2.6) 

rll = 1 - L-a + xy-’ 

It is seen that the condition of stability for a viscoelastic rod in the quasistatic formulation of the 
problem differs from the analogous condition (2.2) found for the dynamic formulation of the same 
problem. 
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If we set the constants x and L in (2.6) equal to zero, i.e. if we consider an elastic rod in a viscous 
medium, then we get f3,4] 

a < 1 - ‘12YB2 

3, THE STAT1C)NAR-f REGfME 

if the initial d&e&on of the axis of the rod is non-zero (fe # fo), then the trajectories of variation 
of the first- and second-order statistical moments of fi, fi, q can be determined from the system of 
equations (IS), (1.6). If we restrict ourselves to obtaining a solution only for the stationary regime, 
then, for the systems in question, the derivatives of the moments can be set equal to zero and then 
the search for the moments of any order can be reduced to the solution of the corresponding system 
of linear algebraic equations. 

Assuming again that the relaxation kernel of the material has the form of a single exponent and 
omitting the intermediate calculations, we can write down the solutions of the systems of equations 
(1.5) and (1.6) for the expectation value and the second-order moment of the amplitude of the 
additional deflection of the rod: 

Gr) = $-r,% G”) = -gfo8 
a = 2cc 1(2ea + @lP> 11 + CL (Ze + x)L;l -t fi%%J 

b = 26 t2a (1 - a) + XL + 28X (28 + %)/ w23 - ~2wZn 

As can be seen, the moments exist if the above-mentioned conditions for the stability of the rod 
are satisfied. 

We shall consider a few characteristic special cases. 

Case 1, An elastic rod (x = L = 0): 

Case 2. A viscoelastic rod without external damping: 

<#I) = 1-L fo 

Case 3. A weightless rod in a viscous medium: 

vt> = LX i--L-a fo 

For an elastic rod (X = L = 0), we get 

(fl> = *ro 

w> = 
2a(~+~p’)-b(~-a)YP 

(~---a)[2t~-aa)-Wl 

which is identical with the analogous solution in 131. 
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The results presented indicate that under stationary conditions the second-order moment (fi2) 
can vary even for constant f. over an extremely wide range, depending on the relations between the 
parameters 01, p2, E, 02, x, L. 
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The redistribution of contact pressure due to the influence of the thermal energy generated by the friction 

between two sliding elastic isotropic bodies is investigated. The plastic strength of the friction pair can be 

represented as the sum of the force and temperature components of the stress tensor. A method for 

controlling plastic deformations connected with wear is proposed. 

1. WE CONSIDER the problem of contact between two elastic heterogeneous bodies, one of which is a 
half-space, while the other one is bounded by an axially-symmetric surface of circular shape. The 
bodies are in contact under the action of a compressive force P and a shear force fP, f being the 
coefficient of friction. The surface of the half-space is sliding at a constant speed V on the stationary 
axially symmetric surface (an irregularity) in the direction of the x axis. As a result of friction, heat is 
generated within the area of contact, which gives rise to the heat flux 

0 09 = VP (r), r < a (1.1) 

into the stationary body. Here y is distribution coefficient of the heat flux, p(r) is the contact 
pressure in the corresponding isothermal contact problem [l] 
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